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LEITER TO THE EDITOR 

Dirac quantisation of a massive spin-: particle coupled with 
a magnetic field 

A Hasumi, R Endo and T Kimura 
Research Institute for Theoretical Physics, Hiroshima University, Takehara, Hiroshima- 
ken 725, Japan 

Received 27 April 1979 

Abstract. The canonical quantisation of the massive spin-: field coupled with the external 
electromagnetic field is carried out by the use of Dirac’s Hamiltonian method. It is shown 
that the quantisation can be achieved even when the magnetic field has such a strength that 
the secondary constraint equation cannot be employed freely. In this case, the equal-time 
anticommutation relation between the field operator and its Hermite conjugate contains the 
fourth-order derivatives of the three-dimensional delta function. 

Recently, Dirac quantisation (Dirac 1964) of free massive spin-? and spin-2 fields has 
been examined by Baaklini and Tuite (1978, 1979). On the other hand, Johnson and 
Sudarshan (1961) pointed out that there exists an inconsistency when one quantises the 
Rarita-Schwinger field interacting with the electromagnetic field within the framework 
of a positive definite metric. We think that the difficulty comes from the fact that the 
secondary constraint equation cannot be used freely when the magnitude of the 
magnetic field H has a special value. It is therefore interesting to investigate Dirac 
quantisation of the spin-; field coupled with the magnetic field of this special strength. 
This is the aim of the present letter. 

In order to simplify the discussion we confine ourselves to the case where the 
electromagnetic field is treated as an external one, and start with the following 
Lagrangian density 
L = t APCIV - 1 A P f i v ( a y &  ) 2~ + A ~ 5 ~ f i a u l j l p  - 2 ~  A Y S Y f i * p  

+ im&.rAp*p - iee Apfiy&Ay5 Y~IJ/PA,,. (1) 
= Our notations are g,, =diag(l, -1, -1, -11, {y f i ,  y y } =  2g*”, ys =iyoy1y2y3, 

SLY”, ~ ” 1 ,  yf i t  = YOY”YO and E 1. 0123 = 

The momenta conjugate to ( + A ) u  and are 
0 

Tu =0, 
k t  (2) 

v8’ =o, r u  = i ( ~ ~ ” ~ o ~ s ~ i * j / i ) u .  

( * , U ( X L  4 ( Y ) ) = ( * L 4 X ) ,  . r ; t ( Y ) ) = S L S u p s 3 ( X - y Y )  (3) 

H* = H + u,r$p” + uLUr$zt 

72: = +(Eki$:  y5 yjyo)u 

The fundamental Poisson brackets (PB’S) are 

and the others are zero. The general Hamiltonian is defined by 

(4) 
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k -  k 1 k i l t  
d a  = r a  - ? ( E  $ i  Y S Y ~ Y O ) ~  = 0 0 -  0 4 = = r a  =0, 

k t  (6) 
&t 5 *o,t = 0, &+ =Tu -~(cki’yoysyi*j)a = 0. 

The conditions that 4: = 0 persist in time determine uka, while 4; = 0 yields the 
secondary constraints 

- .  x = cri’Di$, + my’$j = 0, X E D T J & ~ +  m$jy’ = 0 (7) 

with Di = di - ieAi and DT = ai + ieAi. From the consistency condition dX/dxo = 
CY, H*) = 0 and di/dx0 = 0, we have the secondary constraints 

(8) 6 E 2Ryo$o + rk$k = 0, 

R =%1 -(e/3m2)ai’F,.], rk = y k  +(ie/3m2)yAykyP~Ap. (9) 

det R = (i)4[l - (2e/3m2)2W2]2 

8=2&yoR + &rk = 0 

where 

If 

(10) 

does not vanish, the consistency conditions for e =  8=  0 determine uo and no more 
constraints are generated. All the constraints are of the second class. On the contrary, 
it becomes complicated when det R = 0. The latter case is dealt with later. The 
constraints 4’ = dot = 0 and 6 = 8 = 0 are regarded as defining equations for &, in terms 
of * i .  

The Dirac PB’S are defined by the following two steps. In the first step, by using the 
second-class constraints 4; = 0 and c#$ = 0, Dirac PB’S among GFa(x) and $ts(y) are 
defined in a way similar to the case of free field (Baaklini and Tuite 1978): 

(+iu(x), $;~(YI)* = & ( ~ i ~ i ) u s ~ ~ ( x  by),  (11) 

the others being zero. Using the brackets 

which are defined by means of ( l l ) ,  we define the second step Dirac PB for any 
dynamical variables f(x) and g(y) by 

WX), dY))** 

= ~ f ( x ) ,  g(Y))*-Il d3z1 d3z2~(x) ,  Xm(zl))*~ii(ZIr Z ~ ) C Y ~ ( Z ~ ) ,  g(Y>)* 
(13) 

in which Xm denote xu and ,Vs and D m n  = CYm, xn)*. As shown by two of us (Endo and 
Kimura 19791, the bracket with the double asterisk is the same as the Dirac PB 
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calculated in a single step. Thus, the final Dirac PB'S among (I ( x )  and (I$ (y ) are given 
by 

((Iia ( x ) ,  (1;6 (Y 

= [ ( i /2)yjyi  +(i/12)yiR-'rj-(1/6m)yiR-'Dj+(1/6m)R-'ypi 

+ (i/3m2)R-'D,Dj]aBS3(~ - y )  (14)  

((10a (x), (1;0 (Y ) ) D  = - i (R - ' y J i ) a y ( ( I i y ( x ) ,  (1;6 (Y)>D 

((IO= (XI, ILL (Y >>D = i(R-' yor i )ay( (I i iy (x) ,  (IL(Y ) )D(yor'~-')w.  

The quantisation is performed by equating the equal-time anti-commutation relation 
{ ( Iwa(x) ,  (It6(y)} to i((IMo(x), (ILs(y))D.  It is shown that the Heisenberg equations of 
motion 

i$ia = [(I ia (XI, HI ( 1 5 )  

coincide with the Lagrangian equations of motion. The anticommutation relation 
{yi(Ii, ( I l y ' }  is the same as that of Johnson and Sudarshan. 

We shall now enter into the main problem in which the magnetic field H satisfies 
det R = 0. Here, we take Foi = 0 and = constant in order to simplify the calculation. 
We introduce by 

(16) R = 1 - R = & I  + ( e / 3 m 2 ) c i ' ~ i } .  

The R and I? satisfy the relationship 

RR=O (17) 

RB = 2R yo(I0 + R r k ( I k  = 0, 

f i g G g G f i r k ( I k  =o,  gfi = gr ,,Jkrkfi = 0. (19) 

and their rank is two. Making projections of B and 8 by R and i ,  we have 

eR 2407oR + &rkR = 0 (18) .. 

The consistency conditions RB = 8R = 0 determine Ruo and uAR, while dg1d.x' = 
dB/dxO = 0 give rise to 

(20) 5 3  ~ ~ o l / ' o + ~ A k ( I k  = 0, 5' = +Ay& + (I: Aktd 

where 

Ak y k  + (i/2m)(2e/3m2)2F~mD1ymF,jyigik + ( 2 / m ) ( 2 e / 3 m 2 )  xF,,Digjk ( 2 1 )  

and D'' = a' +ieA'. The consistency conditions d5/dx0 = dtt /dxO = 0 determine gu0 
and u;I?. 

All the constraints become the second class. The constraints do= ?TO = 0 and 
+Re + 6 = 0 and their Hermite conjugates determine (Io and (I; in terms of ( I k  and (I:. 
The procedure of the first step to define Dirac PB is the same as in the case of det R # 0. 
On the contrary, the procedure of the second step becomes cumbersome in fhe 
present case. We shall define brackets with double asterisks by taking ,ye, &, e' and gas  
the second-class constraints xm(m = 1 , 2 , .  . . , 1 2 ) .  To calculate the inverse of 
Dm,,(z l ,  z2 )  = (xm(zl), x,,(zz))* it is convenient to adopt a special coordinate system in 
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which the magnetic field H is H = (0, 0, 3m2/2e). In the Dirac representation of y", 
the result is 

.. 
x i  x ( 7  

U O O d O O  
c 0 -e 

0 0  
O O e O O  

U = -i/3m2, 

c =(D'+iD2)/3m3, d = -(D'-iD2)/3m3, e = i/m. 

b = i(D' +iD2)(D' -iD2)/3m4 

Then, we get the required matrix by carrying out the coordinate transformation into the 
original system. The brackets with double asterisks defined by (13) are nothing but the 
final Dirac PB'S. Thus the equal-time anticommutation relations among (LcLa (x) and 
(Lta(y) are given by 

and the others are zero. It is also shown that the Heisenberg equations for $ j a ( x )  
coincide with the Lagrangian equations and the adequacy of anticommutation relations 
is confirmed. 

The characteristic differences between the cases of det R # 0 and det R = 0 are in (i) 
the equal-time anticommutation relation {$;= (x), $;B (y)} contains the second-order 
derivatives of S3(x - y )  in the former case, while it contains the fourth-order ones in the 
latter case, (ii) the number of degrees of freedom of $w(x) is eight in the former case, 
while it reduces to six owing to the singular nature of R. 
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